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Figure 1: In this work, we introduce MoDA that can reconstruct deformable 3D objects from the input casual videos with
neural deformation models. Deformation models are used to transform 3D points between the canonical space (rest pose)
and the observation space (deformed pose). Previous work BANMo [59] uses linear blend skinning as their deformation
model, resulting in visible skin-collapsing artifacts on the arms. MoDA can solve this problem with the proposed neural dual
quaternion blend skinning.

Abstract

In this paper, we focus on the challenges of modeling
deformable 3D objects from casual videos. With the pop-
ularity of neural radiance fields (NeRF), many works ex-
tend it to dynamic scenes with a canonical NeRF and a de-
formation model that achieves 3D point transformation be-
tween the observation space and the canonical space. Re-
cent works rely on linear blend skinning (LBS) to achieve
the canonical-observation transformation. However, the
linearly weighted combination of rigid transformation ma-
trices is not guaranteed to be rigid. As a matter of fact,
unexpected scale and shear factors often appear. In prac-
tice, using LBS as the deformation model can always lead
to skin-collapsing artifacts for bending or twisting motions.
To solve this problem, we propose neural dual quaternion
blend skinning (NeuDBS) to achieve 3D point deforma-
tion, which can perform rigid transformation without skin-
collapsing artifacts. In the endeavor to register 2D pix-
els across different frames, we establish a correspondence

between canonical feature embeddings that encodes 3D
points within the canonical space, and 2D image features
by solving an optimal transport problem. Besides, we in-
troduce a texture filtering approach for texture rendering
that effectively minimizes the impact of noisy colors out-
side target deformable objects. Extensive experiments on
real and synthetic datasets show that our approach can re-
construct 3D models for humans and animals with better
qualitative and quantitative performance than state-of-the-
art methods. Project page: https://chaoyuesong.
github.io/MoDA.

1. Introduction

Modeling deformable 3D objects from casual videos has
many potential applications in virtual reality, 3D animated
movies, and video games. With the popularity of 2D con-
tent creation based on advanced techniques, the demand for
3D content creation is becoming more and more urgent for
users. Recent works for rigid objects [29, 7] cannot gener-
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alize to deformable object categories such as humans and
animals, which tend to be the focus of content creation to-
day. Others requiring synchronized multi-view video inputs
[35, 34] are also not available to general users. Therefore,
we focus on the challenges of learning deformable 3D ob-
jects from casually collected videos in this work. To achieve
this goal, we need to learn how to represent deformable ob-
jects and model their articulated motions from videos.

Neural radiance field (NeRF) [25] is proposed as a repre-
sentation of static 3D scenes into volume density and view-
dependent radiance. It has shown impressive performance
with volume rendering techniques. To extend NeRF to dy-
namic scenes, recent methods [36, 31, 32, 59, 34] intro-
duce a canonical neural radiance field that models the shape
and appearance, and a deformation model that achieves 3D
point transformation between the observation space and the
canonical space. NSFF[20] and D-NeRF[36] propose a dis-
placement field to perform the deformation. Nerfies [31]
and HyperNeRF [32] represent their deformation model as
a dense SE(3) field. These methods fail when the motion
between deformable objects and the background is large.
Recently, BANMo [59] achieves their deformation model
via linear blend skinning (LBS) to solve this problem. How-
ever, the linearly weighted combination of rigid transforma-
tion matrices is not necessarily a rigid transformation. As
a matter of fact, unexpected scale and shear factors always
appear. In practice, using LBS as the deformation model
can always lead to skin-collapsing artifacts for bending or
twisting motions as shown in Figure 1.

In this work, we present MoDA to Model DeformAble
3D objects from multiple casual videos. To handle the large
motions between deformable objects and the background
without introducing skin-collapsing artifacts, we propose
neural dual quaternion blend skinning (NeuDBS) as our
deformation model to achieve the observation-to-canonical
and canonical-to-observation transformation, which can
guarantee the transformations are rigid by blending unit
dual quaternions [11]. With a canonical NeRF as our shape
and appearance model, we achieve rigid articulated motions
with the proposed deformation model. In the endeavor to
register 2D pixels across different frames, we establish a
correspondence between canonical feature embeddings that
encodes 3D points within the canonical space, and 2D im-
age features. To further promote a one-to-one matching pro-
cess, we have structured the learning of 2D-3D correspon-
dence learning as an optimal transport problem. Besides,
we introduce a texture filtering approach for texture render-
ing that effectively minimizes the impact of noisy colors
(e.g., background colors) outside target deformable objects.
Extensive experiments on real and synthetic datasets show
that MoDA reconstructs 3D deformable objects like humans
and animals with better qualitative and quantitative perfor-
mance than state-of-the-art methods.

We summarize our main contributions as follows:
• We introduce MoDA to model deformable 3D ob-

jects from multiple casual videos. Through extensive ex-
periments, we demonstrate that MoDA has a better per-
formance than state-of-the-art methods quantitatively and
qualitatively on several different datasets.

• To handle the large motions between deformable
objects and the background without introducing skin-
collapsing artifacts, we propose neural dual quaternion
blend skinning (NeuDBS) as our deformation model to
transform the 3D points between observation space and
canonical space.

• To register 2D pixels across different frames, we es-
tablish the correspondence between canonical feature em-
beddings of 3D points in the canonical space and 2D image
features by solving an optimal transport problem.

• We design a texture filtering approach for texture ren-
dering that effectively minimizes the impact of noisy colors
outside target deformable objects.

2. Related work
2.1. 3D human and animal models

Many methods rely on parametric shape models [23, 33,
50, 55, 68, 67, 24] to reconstruct 3D human and animal.
These parametric models are constructed from registered
3D scans of humans or animals. They are popular in build-
ing 3D shapes from images or videos [1, 2, 13, 66] and some
3D human or animal generation tasks [44, 45]. Recently, the
human model (SMPL) is also used to learn skinning weights
for linear blend skinning in [34]. Nonetheless, constructing
parametric models for certain categories, such as various
types of animals, proves to be challenging due to the diffi-
culty in obtaining a sufficient amount of data.

2.2. 3D reconstruction from images or videos

There are many prior methods [10, 5, 18, 19, 54, 62]
learn 3D reconstruction from images or videos with the su-
pervision of 2D annotations (key points, optical flow, etc).
Their performance will usually be limited due to their re-
liance on rough shape templates. Neural implicit surface
representations [30, 38, 39, 41, 42, 51, 61] also have many
applications in image or video reconstruction. [29, 7] learn
to reconstruct rigid objects from videos. In this work, we
focus on the deformable categories, e.g., humans and ani-
mals. Recent work, such as LASR [57] and ViSER [58],
optimizes a single 3D deformable model on a monocular
video using the mask and optical flow supervision. How-
ever, they always introduce unrealistic articulated motions.
With the popularity of neural radiance fields [25], there are
many works [21, 35, 34, 28, 47, 52, 9, 32, 31, 63, 3, 46, 16]
learning to reconstruct the shape and appearance from im-
ages or videos with a NeRF-based template. Instead of



learning the density in NeRF directly, we use the Signed
Distance Function (SDF) that has a well-defined surface at
the zero level-set.

2.3. Neural radiance fields for dynamic scenes

Recently, many works represent dynamic scenes by
learning a deformation model to map the observed points
to a canonical space. NSFF[20] introduces scaled scene
flow to displace the 3D points, D-NeRF [36] learns a dis-
placement to transform the given point to the canonical
space, NR-NeRF [48] learns a rigidity network to model
the deformation of non-rigid objects. Nerfies and Hyper-
NeRF [31, 32] learn a dense SE(3) field to formulate the
deformation. These methods always fail when the motion
between deformable objects and the background is large.
[21, 35, 34, 28, 47, 52, 9] were proposed to solve this prob-
lem. However, they either rely on a 3D human model (e.g.,
SMPL [23]) or synchronized multi-view videos. BANMo
[59] can build 3D shapes from casual videos without hu-
man or animal models, it learns the deformation model us-
ing linear blend skinning (LBS), which always produces
skin-collapsing artifacts. To mitigate this issue, we model
the deformation with neural dual quaternion blend skinning
(NeuDBS) in this work.

2.4. Correspondence Learning

Several prior works[58, 59] have utilized soft-argmax re-
gression to establish a correlation between a canonical fea-
ture embedding, which encodes semantic information of
three-dimensional points in the canonical space, and two-
dimensional pixel features. However, soft-argmax match-
ing, which computes cosine similarities, can result in many-
to-one matching problems. Optimal transport has emerged
as an influential tool in addressing this issue, particularly
due to its propensity to promote one-to-one matching. This
approach has been used in scene flow prediction between
point clouds [37, 17], 3D semantic segmentation [40] and
few-shot segmentation [22]. Other research, such as those
conducted by Song et al. [44, 45], has applied optimal trans-
port to learn the correspondence between different meshes
for 3D pose transfer. In this work, we extend this line of in-
vestigation by solving an optimal transport problem to build
the correspondence between canonical feature embeddings
and 2D pixel features, enabling the registration of pixel ob-
servations across varying frames.

3. Revisit linear blend skinning
The aim of linear blend skinning (LBS) [15, 8] is to blend

transformation matrices linearly and then transform vertices
in the rest pose to the expected position in the deformed
pose. Each vertex in the mesh can be influenced by multiple
joints. The influence of joints on each vertex is controlled
by skinning weights. We assume that vertex v is influenced
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Figure 2: From state a to c, BANMo and our method can
both perform well for motion with small joint rotations.
From state d to f, BANMo has more and more obvious
skin-collapsing artifacts for motion with large rotations, our
method resolves the artifacts with the proposed NeuDBS.

by joints {j1, ..., jn} with skinning weights {w1, ..., wn}.
Then the transformed vertex position can be formulated as

v′ = (

n∑
i=1

wiTi)v, (1)

where Ti ∈ SE(3) is the transformation matrix. Al-
though each Ti represents a rigid transformation, the lin-
early weighted combination of them is not necessarily a
rigid transformation since the addition of orthonormal ma-
trices is not closed. Scale and shear factors always ap-
pear. Therefore, the blended transformation matrix applied
to vertices tends to cause the limb to shrink and lose volume
for bending and twisting motions, which is known as skin-
collapsing artifacts. We refer readers to [11] for details.

LBS has shown impressive performance as the deforma-
tion model to represent dynamic scenes in BANMo [59], but
it still has obvious limitations as discussed above. To bet-
ter understand the performance of LBS as the deformation
model, we compare BANMo and our method on a relatively
complete human motion sequence from state a to f in Fig-
ure 2. For BANMo (the first line in Figure 2), it performs
well and has no obvious skin-collapsing artifacts for motion
with small joint rotations (state a to c), but the artifacts are
more and more clear for larger rotations (state d to f ). Our
method (the second line in Figure 2) can solve this prob-
lem using neural dual quaternion blend skinning (NeuDBS)
which will be described in Section 4.2.
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Figure 3: The overview of MoDA. We represent the deformable 3D objects from multiple casual videos with a shape and
appearance model based on a canonical neural radiance field and a deformation model that achieves 3D point transformation
between the observation space and the canonical space. Instead of linear blend skinning used in previous works, we propose
NeuDBS as our deformation model. With the learned unit dual quaternions and the skinning weights, we can transform Xt

from the observation space to X∗ in the canonical space. We visualize the joints and the skinning weights (as surface colors)
in the canonical space.

4. Method
The overview of our approach is shown in Figure 3. In

this work, we represent the deformable 3D objects from
multiple casual videos with a shape and appearance model
(Section 4.1) based on a canonical neural radiance field
and a deformation model (Section 4.2) that transforms 3D
points between the observation space and the canonical
space. To resolve the skin-collapsing artifacts seen in pre-
vious methods, we propose neural dual quaternion blend
skinning (NeuDBS) to achieve the expected rigid transfor-
mations by blending unit dual quaternions. In order to reg-
ister 2D pixels across different frames, we formulate the
correspondence learning between canonical feature embed-
dings of 3D points in the canonical space and 2D image
features as an optimal transport problem (Section 4.3). Fur-
thermore, we design a texture filtering approach (Section
4.4) for texture rendering that effectively minimizes the im-
pact of noisy colors outside target deformable objects.

4.1. Shape and appearance model

We first introduce how to model the shape and appear-
ance of a deformable object in canonical space. As in Neu-
ral Radiance Fields (NeRF) [25], we learn the color and
density of a 3D point X∗ ∈ R3 in the canonical space,

ct = Fcolor(X
∗,Dt,ψt

a), (2)

σ = Φβ(FSDF(X
∗)), (3)

where Fcolor and FSDF are MLP networks, Dt = (ϕt, θt) is
the time-varying view direction and ψt

a is a 64-dimensional
latent appearance code to encode the appearance variations.

Our canonical shape is modeled by FSDF, which pre-
dicts signed distances for 3D points in the canonical space.

To perform volume rendering as [25], we need to convert
signed distances into density. In this work, we use the Cu-
mulative Distribution Function of the Laplace distribution
with zero mean and β scale, denoted as Φβ(·). β is a learn-
able parameter. As discussed in [51, 60], the Signed Dis-
tance Function (SDF) has a well-defined surface at the zero
level-set compared with the density function used in NeRF.

4.2. Deformation model

In this section, we introduce how to achieve the 3D
point transformation between the observation space and the
canonical space via the deformation model. We denote the
canonical-to-observation and observation-to-canonical de-
formation as Dt

c−→o and Dt
o−→c respectively. The body pose

in the canonical space is also known as rest pose.

Canonical-Observation deformation. For any 3D point
Xt in the observation space, we can map it to the corre-
sponding point X∗ in the canonical space via the deforma-
tion model. Here, we denote Ct ∈ SE(3) as the trans-
formation of the camera pose from the canonical space to
the observation space at time t, and Q̂t

j ∈ R8 as the rigid
transformation represented by a unit dual quaternion that
transforms the j-th joint from the rest pose to the deformed
position at time t, then

Xt = Dt
c−→o(X

∗) = CtQ̂t
c−→oX

∗, (4)

X∗ = Dt
o−→c(X

t) = Q̂t
o−→c(C

t)−1Xt, (5)

where Q̂t
o−→c and Q̂t

c−→o are blended by J rigid transfor-
mations that transform the joints between the rest pose and
the deformed positions at time t. Multiplication between
dual quaternions and 3D coordinates can be done by simply
converting the 3D coordinates to dual quaternion format.



Transformations for body pose and camera pose are re-
spectively parametrized by MLP networks Fpose and Fcam,

Q̂t = Fpose(ψ
t
b), Ct = Fcam(ψ

t
c)C

t
0, (6)

where Q̂t = {Q̂t
1, ..., Q̂

t
J} are the learned unit dual quater-

nions for rigid body pose transformations. Ct
0 is the ini-

tial camera pose learned from PoseNet [59, 64]. ψt
b and ψt

c

are 128-dimensional latent body pose code and camera pose
code respectively.

Neural dual quaternion blend skinning. Dual quater-
nion blend skinning (DBS) was first proposed by Kavan
et al. [11] and can effectively resolve the skin-collapsing
artifacts. All DBS-related parameters (body pose transfor-
mation, skinning weights, and joints) are predefined in [11],
but are unknown and difficult to obtain in our task. There-
fore, our main challenge is to define and predict these pa-
rameters, the basic idea is that we learn them with MLP
networks.

To prevent the skin-collapsing artifacts as discussed in
Section 3 and better model the deformation of 3D ob-
jects, we propose neural dual quaternion blend skinning
(NeuDBS) as our deformation model. Instead of blend-
ing the transformation matrices, our method blends the unit
dual quaternions linearly and then normalizes the results
to get the final dual quaternion. Given learned unit dual
quaternions {Q̂t

1, ..., Q̂
t
J} that represent the rigid transfor-

mations, the blended unit dual quaternion can be computed
as follows,

Q̂t
c−→o =

∑J
j=1W

t
j,c−→oQ̂

t
j∥∥∥∑J

j=1W
t
j,c−→oQ̂

t
j

∥∥∥ , (7)

Q̂t
o−→c =

∑J
j=1W

t
j,o−→c(Q̂

t
j)

−1∥∥∥∑J
j=1W

t
j,o−→c(Q̂

t
j)

−1
∥∥∥ , (8)

where W t
j,c−→o and W t

j,o−→c are skinning weights that con-
trol the influence of j-th joint on X∗ and Xt respectively.
By computing a unit dual quaternion, NeuDBS always re-
turns a valid rigid transformation which can prevent the
skin-collapsing artifacts.

In addition to the difference in parameter definition, Ka-
van et al. must convert predefined 3 × 4 skinning matri-
ces to dual quaternions first to apply DBS. MoDA learns
7 scalars per joint via MLP and then directly derives dual
quaternions (see next paragraph for details), which does not
require the quaternion-matrix conversion and is more effi-
cient. We will also introduce how to define and optimize
the skinning weights in the supplement.

Learning of body pose transformation. In BANMo
[59], they learn 6 scalars per joint for body pose transfor-
mation. 3 of them are for translation, the other 3 scalars are
the logarithmic representation of the rotation matrix. They
convert logarithmic representations of rotation matrices into
3× 3 rotation matrices. Therefore, BANMo ends up requir-
ing a 3× 4 matrix per joint for body pose transformation.

In this work, we learn 7 scalars per joint via Fpose for
the rigid transformation. 3 of them (t1, t2, t3) are for trans-
lation, then we can obtain the quaternion qt = [0, t1, t2, t3]
representing the translation, where 0 is the scalar part,
t1i+ t2j+ t3k is the vector part of a quaternion. The other
4 scalars are the quaternion qr that represents the rotation.
Then we convert them to the dual quaternion,

Qr = q̂r, Qd =
1

2
qt

⊗
q̂r, (9)

where Qr is the real part of the dual quaternion, Qd is
the dual part of the dual quaternion. q̂r is the normalized
quaternion to make sure the calculated dual quaternion is
the unit dual quaternion.

⊗
means the multiplication be-

tween quaternions.
In sum, BANMo learns 6 scalars and requires a 3 × 4

matrix per joint to represent the body pose transformation.
Our MoDA learns 7 scalars but only requires 8 scalars per
joint for the body pose transformation, which introduces a
more efficient representation. Linear Blend Skinning (LBS)
[8, 15] is widely recognized for its efficiency, and the train-
ing time required for MoDA with NeuDBS is comparable
to that of BANMo, please refer to the appendix for details.

4.3. 2D-3D matching via optimal transport

To match pixels at different frames, we establish the cor-
respondence between canonical feature embeddings of 3D
points in the canonical space and 2D image features. In
[58, 59], they employ soft-argmax regression to learn the
2D-3D correspondence by calculating the cosine similar-
ity. To perform better matching, we formulate the 2D-
3D matching as an optimal transport problem that encour-
ages one-to-one matching. Given pixels {xt}Npixel

and
3D points {X∗}Npoint in the canonical space, we learn
the pixel features fpixel(xt) ∈ R16×Npixel with CSE [26,
27] and the canonical feature embeddings fpoint(X∗) =
Femb(X

∗) ∈ R16×Npoint . We obtain the correlation matrix
M ∈ RNpixel×Npoint by calculating their cosine similarity,

M(j, k) =
fpixel(j)

⊤fpoint(k)

∥fpixel(j)∥ ∥fpoint(k)∥
(10)

where M(j, k) is the matching score between j-th pixel and
k-th point. To formulate the optimal transport problem, we
define a matching matrix T ∈ RNpixel×Npoint and the cost
matrix Z = 1 −M. Our goal is to minimize the total cost
to get the optimal matching matrix:



T∗ =argmin
T

∑
jk

Z(j, k)T(j, k)

s.t. T1Npoint = 1Npixel
N−1

pixel,T
⊤1Npixel

= 1NpointN
−1
point.

(11)
This optimal transport problem can be solved by the

Sinkhorn-Knopp algorithm [43]. Then we can find the 3D
surface point in the canonical space matching to xt by warp-
ing the sampled points V∗ in a canonical 3D grid,

X̃∗(xt) =
∑

X∈V∗

T∗X, (12)

Based on the 3D surface points, we have the 2D-3D
matching losses. We first define a point matching loss [59]
as

Lmatch =
∑
xt

∥∥∥X̃∗(xt)−X∗(xt)
∥∥∥2
2
, (13)

where X∗(xt) is calculated from Eq. 17. We also de-
fine a projection loss [14, 58, 59] that encourages the im-
age projection after canonical-to-observation deformation
of X̃∗(xt) to be close to its original 2D coordinates.

Lproj =
∑
xt

∥∥∥Pt(Dt
c−→o(X̃

∗(xt))− xt
∥∥∥2
2
. (14)

where Pt is the projection matrix of a pinhole camera.

4.4. Volume rendering and optimization

Texture filtering for volume rendering. When predict-
ing the object color as Eq. 2, the training process will in-
evitably introduce some noisy textures (e.g., background
texture in the first row of Figure 8) that do not belong to
the target deformable objects.

Inspired by [53, 65], we develop a texture filtering ap-
proach to mitigate this issue. Rather than relying on seman-
tic fields to calculate opacity in [53, 65], we utilize a texture
filtering function s for texture rendering, which can exclude
the noisy colors outside objects (i.e., remove the estimated
color ct when SDF d > 0).

Here, we define xt ∈ R2 as the pixel location at time t,
and Xt

k as the k-th sampled point along the ray that origi-
nates from xt. Then color c and opacity o ∈ [0, 1] are given
by:

c(xt) =

N∑
k=1

τk(skc
t
k), o(xt) =

N∑
k=1

τk, (15)

where N is the number of sampled points, τk =

αk

∏k−1
i=1 (1− αi), αk = 1 − exp(−σkδk), δk is the dis-

tance between the k-th sample and the next, and σk is the
density in Eq. 3. Texture filtering function s is defined as

s =
γ

1 + eλd
, (16)

which is a scaled sigmoid function based on SDF d =
FSDF(X

∗). s gives 0 weights to ct of the sampled points
that are far away from the object (have large positive SDF
values) to exclude them in the rendering process. γ and λ
are scale and temperature parameters.

We can also calculate the surface point,

X∗(xt) =

N∑
k=1

τkX
∗
k, (17)

where X∗
k is obtained by applying the deformation Dt

o−→c

to the k-th 3D point Xt
k.

Optimization. Similar to existing methods [25, 61, 59],
we optimize our models with below reconstruction losses
between the predicted and the observed properties,

Lrgb =
∑
xt

∥∥c(xt)− c̃(xt)
∥∥2, (18)

Lsil =
∑
xt

∥∥o(xt)− s̃(xt)
∥∥2, (19)

where Lrgb and Lsil are the pixel color loss and silhou-
ette loss respectively. c̃ and s̃ are observed pixel color and
silhouette. Here, s̃ is extracted from off-the-shelf method
[12]. We will introduce other losses in the supplement.

5. Experiments
5.1. Dataset, metrics, and implementation details

Casual videos. To demonstrate the effectiveness of
MoDA, we test it on casual videos of humans and animals.
The casual-cat dataset includes 11 videos (900 frames in
total) of a British shorthair cat, which are collected by
[59]. The casual-human dataset [59] includes 10 videos
(584 frames in total). The casual-adult dataset includes 10
videos (1000 frames in total). The capture of the videos
has no control for camera and object movements. We use
the object silhouette and optical flow predicted by [12, 56]
respectively.

AMA dataset. To evaluate our method quantitatively, we
use the Articulated Mesh Animation (AMA) dataset [49]
that provides ground truth meshes. AMA is collected with
the setup consisting of a ring of 8 cameras. We train our
models on 2 sets of videos of the same person (swing and
samba, including 2600 frames in total) with ground truth
object silhouettes and the optical flow predicted by [56].

Animated objects dataset. Besides cats and humans, we
quantitatively evaluate our method on other deformable cat-
egories. We use the animated objects dataset from Tur-
boSquid (known as eagle and hands). They both include



Table 1: Quantitative comparison between different methods. We compare our method with state-of-the-art methods on
multiple-video and single-video setups. To quantitatively evaluate different methods, we use Chamfer distance (cm, ↓) and
F-score(%, ↑) as the metrics. Our method has the best performance for both multiple-video and single-video setups.

Type Method AMA-Swing AMA-Samba Eagle Hands

CD(↓) F(2%, ↑) CD(↓) F(2%, ↑) CD(↓) F(2%, ↑) CD(↓) F(2%, ↑)

Multiple
ViSER 35.8 9.9 33.8 10.0 36.9 2.5 13.5 32.6

BANMo 7.9 60.8 7.9 60.4 5.2 68.7 5.1 69.5
Ours 7.3 63.1 6.7 67.5 4.8 75.0 4.4 73.9

Single

Nerfies 39.1 5.5 42.7 4.8 27.9 10.4 33.8 6.8
HyperNeRF 42.9 4.9 41.7 5.2 28.6 10.2 30.9 8.3

BANMo 9.0 55.8 9.6 51.6 14.4 45.1 12.7 27.2
Ours 8.6 60.6 8.8 56.2 13.7 45.7 11.3 32.8

5 videos with 150 frames per video. We train these two
datasets with the ground truth camera poses, ground truth
silhouettes and the optical flow predicted by [56].

Metrics. To compare different methods quantitatively, we
use Chamfer distance (CD) [4] and F-scores as our evalua-
tion metrics. CD is calculated between the point sets of the
reconstructed mesh and the ground truth mesh. For CD, the
lower is better. For F-scores, we compare different meth-
ods at distance thresholds d = 2%, and the bigger the better
when using F-scores.

Implementation details. In this work, we set the num-
ber of joints to 25. The initialization of them is similar
to BANMo [59], with unit scale, identity orientation, and
uniformly distributed centers. The meshes are extracted by
running marching cubes on a 2563 grid. For more imple-
mentation details, please refer to our appendix.

5.2. Comparison results on multiple videos

In this section, we compare MoDA with ViSER [58] and
BANMo [59] over multiple videos. For a fair comparison,
we provide them with the same initial camera poses. And
we train BANMo and ViSER using the implementations
provided by the authors.

As shown in Figure 4, ViSER cannot learn detailed
shapes and accurate poses from the given videos. To bet-
ter demonstrate the influence of the deformation model, we
also show the corresponding rest pose for each reference
image. For motion with large joint rotations, the results of
BANMo have obvious skin-collapsing artifacts (as shown
in the red circles). The reconstructed shapes tend to shrink
and lose volume, e.g., the arms of humans in casual-adult,
casual-human and AMA-samba, and the body of the cat
in casual-cat. Our method can solve these problems and
achieve rigid articulated motions. For eagle, BANMo and

our method have close performance since the motion of the
eagle from the rest pose to the deformed pose is relatively
slight. We will show more results on multiple-video setups
(including the video demonstrations) in the supplement.

For the quantitative results as shown in Table 1, our
method also has a better performance than BANMo and
ViSER on multiple-video setups.

5.3. Comparison results on single-video setups

In this section, we compare MoDA with Nerfies [31],
HyperNeRF [32] and BANMo [59] over single-video se-
tups. To make a fair comparison, we also provide them with
the same initial camera poses. We reproduce Nerfies, Hy-
perNeRF, and BANMo using the implementations provided
by the authors. Besides, we provide Nerfies and HyperN-
eRF with the ground truth object silhouettes of AMA and
Animated objects datasets to calculate the silhouette losses
which can help to improve the performance.

Nerfies and HyperNerf have very close performance so
we only show the results of HyperNeRF in Figure 5. Hyper-
NeRF fails to learn reasonable shapes and deformations for
deformable 3D objects when the motion between the object
and the background is large. The reconstructed results of
BANMo still have clear skin-collapsing artifacts as shown
in the red circles while MoDA has a better performance and
resolves the skin-collapsing artifacts. Obviously, the per-
formance of BANMo and MoDA both degrade with some
unexpected artifacts compared to the multiple-video setups.

For the quantitative results as shown in Table 1, our
method has a better performance than Nerfies, HyperNeRF,
and BANMo on single-video setups. The quantitative per-
formance of BANMo and our method on single-video se-
tups also degrades compared to the multiple-video setups.

5.4. Ablation study

Optimal transport. We also evaluate the importance of
optimal transport for 2D-3D matching. To disable optimal
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Figure 4: Qualitative comparison on multiple videos. The data is from casual-adult, casual-human, AMA-samba, casual-
cat, eagle from top to bottom. The lower right corner of each reference image is the corresponding rest pose. We show 2
views of the reconstructed results based on the reference images. ViSER [58] fails to learn detailed 3D shapes and accurate
poses from the videos. BANMo [59] has obvious skin-collapsing artifacts (in the red circles) for motions with large joint
rotations while our method performs well. For eagle with slight motion, BANMo and our method have close performance.

transport, we use the soft-argmax regression by calculating
the cosine similarity that is similar to [58, 59]. According
to the results presented in Table 2, our method with opti-
mal transport achieves better performance than using soft-
argmax regression when testing on AMA dataset [49]. In
the case of the AMA dataset, which has a clean background
and accurate ground truth masks, the addition of optimal
transport does not significantly improve performance.

When evaluating our method on the casual-cat dataset,
the inclusion of optimal transport provides more obvious

advantages. It facilitates improved 2D-3D matching, which,
in turn, aids in refining the object silhouette. Figure 6 illus-
trates this improvement. The predicted mask obtained from
[12] is inaccurate due to the close pixel colors between the
cat and the snack. In such a scenario, both BANMo [59]
and our method without optimal transport struggle to refine
the mask and accurately capture the 3D geometry. In most
frames, the two objects (cat and snack) are not closely lo-
cated to the extent of being mistaken for a single object.
As a result, by utilizing optimal transport to achieve better
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Figure 5: Qualitative comparison on a single video. The data is casual-adult, AMA-swing, casual-cat, eagle from top to
bottom. The lower right corner of each reference image is the corresponding rest pose. We show 2 views of the reconstructed
results based on the reference images. HyperNeRF [32] fails to learn reasonable shapes and deformations. For single-video
setups, BANMo [59] still has obvious skin-collapsing artifacts (in the red circles) for motions with large joint rotations while
our method performs better.

Reference image

Predicted mask by 

off-the-shelf method
OursBANMo Ours w/o OT

Figure 6: Ablation study of optimal transport. By registering 2D pixels across different frames with optimal transport, we
can refine the bad segmentation and predict the consistent 3D shape of the cat.
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Figure 7: Ablation study of deformation models. The displacement field and SE(3) field cannot accurately preserve shapes
and learn the pose of humans when dealing with large motions between humans and the background. LBS-based has obvious
skin-collapsing artifacts (in the red circles) on the arm during bending motions. Our method achieves the best performance.

matching, we can refine the initial segmentation and predict
the consistent 3D shape of the cat.

BANMo

w/ filtering

Reference 

image
BANMo

Ours 

w/o filtering 
Ours

Figure 8: Ablation study of texture filtering. Texture ren-
dering results of BANMo [59] and MoDA without texture
filtering have obvious noisy textures. Adding texture filter-
ing to them can effectively alleviate this issue.

Deformation model. To further validate the effectiveness
of our proposed NeuDBS, we compare it with other defor-
mation models. Specifically, we replace NeuDBS with al-
ternative deformation models, including the displacement
field from [20, 36], SE(3) field from [31, 32] and neural
linear blend skinning (LBS) from [59].

The qualitative results on casual-adult and casual-
human are shown in Figure 7, the displacement field and
SE(3) field cannot accurately preserve shapes and learn the
pose of humans, particularly in the case of large motions.
Furthermore, LBS exhibits noticeable skin-collapsing ar-
tifacts on the arm during bending motions. In contrast,
our proposed NeuDBS demonstrates superior performance
compared to these three deformation models. It success-
fully preserves shapes and avoids skin-collapsing artifacts,
resulting in visually improved outputs. To provide quanti-
tative evidence, we present the results on the AMA dataset
[49] in Table 2. Our NeuDBS consistently outperforms the
alternative deformation models.

Texture filtering. Here we also test the importance of the
proposed texture filtering on AMA [49], casual-adult, and
casual-human. The texture rendering results of BANMo
[59] and MoDA without texture filtering exhibit noticeable
noisy textures on arms (the first row in Figure 8) and human
bodies (the second and the third rows in Figure 8). Adding
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Figure 9: Motion re-targeting. We compare the motion re-targeting results from the pre-trained AMA model to casual-adult
and casual-human videos, our method performs better.

Table 2: Quantitative ablation studies. We evaluate dif-
ferent deformation models and the optimal transport mod-
ule on AMA dataset. We use Chamfer distance (cm, ↓) and
F-score(%, ↑) as the metrics.

Method AMA-Swing AMA-Samba

CD(↓) F(2%, ↑) CD(↓) F(2%, ↑)

Displacement 9.3 54.4 9.1 56.2
SE(3) 10.6 48.0 9.5 52.4
LBS 7.9 61.9 7.5 62.5

w/o OT 7.8 61.5 6.9 67.1
Ours 7.5 63.7 6.3 71.3

texture filtering to both BANMo and MoDA can effectively
alleviate this problem.

5.5. Motion re-targeting

We compare BANMo [59] and MoDA’s ability of motion
re-targeting. Given the pre-trained model on AMA [49] and
driving videos of casual-adult and casual-human, we only
optimize the frame-specific camera and body pose codes ψt

c

and ψt
b while keeping other model parameters unchanged.

As shown in Figure 9, MoDA has a better performance than
BANMo.

6. Conclusion and limitations

In this paper, we present MoDA, an effective approach
for modeling deformable 3D objects from casual videos.
We represent 3D objects with a canonical neural radiance
field (NeRF) and a deformation model that achieves the
3D point transformation between the observation space and
the canonical space. To handle large motions between de-
formable objects and the background without introducing
skin-collapsing artifacts, we propose neural dual quaternion
blend skinning (NeuDBS) as our deformation model that
can return valid rigid transformations by blending unit dual
quaternions. To register 2D pixels across different frames,
we model the correspondence learning between canonical
feature embeddings of 3D points in the canonical space and
2D image features as an optimal transport problem. Be-
sides, we develop a texture filtering technology for texture
rendering that effectively minimizes the impact of noisy
colors outside target deformable objects. Extensive experi-
ments on real and synthetic datasets show that the proposed
approach can reconstruct 3D shapes for humans and ani-
mals with better qualitative and quantitative performance
than state-of-the-art methods.

Although MoDA achieves impressive performance in
most cases, there are still some limitations that need to be
solved in the future. For example, MoDA does not recon-
struct the detailed shape of the human hand and the perfor-
mance on a single video can be further improved.
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Appendix A. More details of MoDA
A.1. Skinning weights for NeuDBS

We define the skinning weights for NeuDBS as W =
{W1, ...,WJ} ∈ RJ , where J is the number of joint. Learn-
ing the skinning weights only from neural networks is dif-
ficult to optimize. To obtain the skinning weights for the
proposed NeuDBS, we first calculate the Gaussian skinning
weights and then learn the residual skinning weights with
an MLP network following [59].

Firstly, we compute the Gaussian skinning weights based
on the Mahalanobis distance between 3D points and the
Gaussian ellipsoids,

WG = (X−O)TVTΛ0V(X−O), (20)

where O ∈ RJ×3 are the joint center locations, V ∈
RJ×3×3 are joint orientations and Λ0 ∈ RJ×3×3 are di-
agonal scale matrices. The joints represented by explicit
3D Gaussian ellipsoids are composed of these 3 elements:
center, orientation, and scale. To learn better skinning
weights for 3D deformation, we predict the residual skin-
ning weights from an MLP network,

Wr = Fskin(X,ψb), (21)

then we have the final skinning weights,

W = σsoftmax(WG +Wr). (22)

To be specific, the skinning weights Wt
o−→c are learned

from 3D points in the observation space and the body pose
code ψt

b at time t, and Wt
c−→o are learned from 3D points

in the canonical space and the rest pose code ψ∗
b .

A.2. Loss functions

Optical flow loss. We render 2D flow to compute the opti-
cal flow loss. Specifically, we deform the canonical points
to another time t′ and get its 2D re-projection,

xt′ =

N∑
k=1

τkP
t′(Dt′

c−→o(X
∗
k)), (23)

where Pt′ is the projection matrix of a pinhole camera.
Then we can compute the 2D flow,

f(xt, t −→ t′) = xt′ − xt, (24)

and the optical flow loss Lof is defined as

Lof =
∑

xt,(t,t′)

∥∥∥f(xt, t −→ t′)− f̃(xt, t −→ t′)
∥∥∥2, (25)

where f̃ is the observed optical flow that are extracted from
off-the-shelf method [56].
3D cycle consistency loss. Similar to [20, 59], we introduce
a 3D cycle consistency loss to learn better deformations. We
deform the sampled points in the observation space to the
canonical space and then deform them back to their original
coordinates,

Lcyc =
∑
k

τk
∥∥Dt

c−→o(Dt
o−→c(X

t
k))−Xt

k)
∥∥2
2
, (26)

where τk weighs the sampled points to guarantee the points
closer to the surface have stronger regularization.
Eikonal loss. We also adopt the implicit geometric regular-
ization term [6] as :

Leikonal =
∑

X∈V∗

(∥∇FSDF(X)∥2 − 1)2. (27)

A.3. Implementation details

The optimization strategies of MoDA include three
stages. Firstly, we optimize all losses and parameters. In
this stage, MoDA already reconstructs good shape and de-
formation. Then we improve the articulated motions, where
we only update the parameters related to the deformation
model while keeping the shape parameters fixed. Finally,

Figure 10: The texture filtering function.



Table 3: Training time comparison. We compare the
training times of our method and BANMo [59] on different
datasets. We also show the number of videos and frames of
different datasets for reference. The unit of time is hour.

Dataset Video Frame Time

BANMo MoDA

AMA 16 2600 10.00 11.00
casual-cat 11 900 8.75 9.50

casual-human 10 584 8.00 9.00
casual-adult 10 1000 9.00 10.25

eagle 5 750 8.25 9.25
hands 5 750 8.25 9.25

we improve the details of the reconstructions through im-
portance sampling while freezing the camera poses. The
design of MLP networks in MoDA is similar to BANMo
[59]. The hyperparameters γ and λ in the texture filtering
function are set to 1.5 and 10 respectively (See Figure 10
for the function).

A.4. Dataset

We use 6 datasets in this work, where casual-cat, casual-
human, eagle and hands are collected by BANMo [59].
We have obtained permission to use these datasets. AMA
dataset is the published dataset collected by [49]. The usage
of casual-adult has also obtained consent.

Appendix B. More results on multiple-video
setups

In this section, we show more experimental results on
multiple-video setups. In Figure 11, we illustrate the cor-
respondence between different videos in both the casual-
human and casual-cat datasets. Distinct colors represent
the correspondence.

We also show more results comparing MoDA with
BANMo [59] and ViSER [58] on casual-human and casual-
adult in Figure 12.

Appendix C. Training time

We compare the training times of our method and
BANMo [59] on different datasets. We train the models
on two RTX 3090 GPUs. As shown in Table 3, MoDA
and BANMo both have fast training on different datasets.
BANMo takes around 8-10 hours. MoDA takes about one
hour more than BANMo. However, this slight increase in
training time is justified by the improved performance of-
fered by MoDA.
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