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Abstract

With the explosive growth of 3D content creation, there
is an increasing demand for automatically converting static
3D models into articulation-ready versions that support
realistic animation. Traditional approaches rely heavily
on manual annotation, which is both time-consuming and
labor-intensive. Moreover, the lack of large-scale bench-
marks has hindered the development of learning-based so-
lutions. In this work, we present MagicArticulate, an ef-
fective framework that automatically transforms static 3D
models into articulation-ready assets. Our key contri-
butions are threefold. First, we introduce Articulation-
XL, a large-scale benchmark containing over 33k 3D
models with high-quality articulation annotations, care-
fully curated from Objaverse-XL. Second, we propose a
novel skeleton generation method that formulates the task
as a sequence modeling problem, leveraging an auto-
regressive transformer to naturally handle varying num-
bers of bones or joints within skeletons and their inherent
dependencies across different 3D models. Third, we pre-
dict skinning weights using a functional diffusion process
that incorporates volumetric geodesic distance priors be-
tween vertices and joints. Extensive experiments demon-
strate that MagicArticulate significantly outperforms ex-
isting methods across diverse object categories, achieving
high-quality articulation that enables realistic animation.
Project page: https://chaoyuesong.github.io/
MagicArticulate.

1. Introduction

The rapid advancement of 3D content creation has led
to an increasing demand for articulation-ready 3D mod-
els, especially in gaming, VR/AR, and robotics simula-
tion. Converting static 3D models into articulation-ready
versions traditionally requires professional artists to man-
ually place skeletons, define joint hierarchies and specify
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skinning weights, which is both time-consuming and de-
mands significant expertise, making it a major bottleneck in
modern content creation pipelines.

To address these issues, various automatic approaches
for skeleton extraction have been proposed, which can be
categorized into template-based [3, 22] and template-free
methods [2, 17, 42, 43]. Template-based methods, like
Pinocchio [3], fit predefined skeletal templates to input
shapes. While they achieve satisfactory results for specific
categories like human characters, they struggle to generalize
to objects with varying structural patterns. Moreover, these
methods mostly rely on distance metrics between joints and
vertices for skinning weight prediction, which often fail on
shapes with complex topology. Many template-free meth-
ods [2, 6, 17, 24, 36] extract curve skeletons from meshes
or point clouds using shape medial axis or the centerline
of shapes, but often produce densely packed joints that are
unsuitable for animation. Recent deep learning methods
like RigNet [43] have shown promise in predicting skele-
tons and skinning weights directly from input shapes. How-
ever, they rely heavily on carefully crafted features and
make strong assumptions about shape orientation, limiting
their ability to handle diverse object categories. These lim-
itations stem from two fundamental challenges: the lack
of a large-scale, diverse dataset for training generalizable
models, and the inherent difficulty in designing an effective
framework capable of handling complex mesh topologies,
accommodating varying skeleton structures, and ensuring
the coherent generation of both accurate skeletons and skin-
ning weights.

To overcome these challenges, we first introduce
Articulation-XL, a large-scale dataset containing over 33k
3D models with high-quality articulation annotations care-
fully curated from Objaverse-XL [11, 12]. Built upon this
benchmark, we propose MagicArticulate, a novel frame-
work that addresses both skeleton generation and skinning
weight prediction. Specifically, we reformulate skeleton
generation as an auto-regressive sequence modeling task,
enabling our model to naturally handle varying numbers of
bones or joints within skeletons across different 3D mod-
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Figure 1. Given a 3D model, MagicArticulate can automatically generate the skeleton and skinning weights, making the model
articulation-ready without further manual refinement. The input meshes are generated by Rodin Gen-1 [50] and Tripo 2.0 [1]. The
meshes and skeletons are rendered using Maya Software Renderer [19].

els. For skinning weight prediction, we develop a func-
tional diffusion framework that learns to generate smoothly
transitioning skinning weights over mesh surfaces by incor-
porating volumetric geodesic distance priors between ver-
tices and joints, effectively handling complex mesh topolo-
gies that challenge traditional geometric-based methods.
These designs demonstrate superior scalability on large-
scale datasets and generalize well across diverse object cat-
egories, without requiring assumptions about shape orienta-
tion or topology.

Extensive experiments on our Articulation-XL and Mod-
elsResource [38] collected by Xu et al. [42, 43] demon-
strate the effectiveness of MagicArticulate in both skeleton
generation and skinning weight prediction. The proposed
methods also generalize well to 3D models from various
sources, including artist-created assets, and models gener-
ated by AI techniques. With the generated skeleton and
skinning weights, our method automatically creates ready-
to-animate assets that support natural pose manipulation
without manual refinement (Figure 1), particularly benefi-
cial for large-scale animation content creation.

Our key contributions include: (1) The first large-scale
articulation benchmark containing over 33k models with

high-quality articulation annotations; (2) A novel two-stage
framework that effectively handles both skeleton generation
and skinning weight prediction; (3) State-of-the-art perfor-
mance and demonstrated practicality in real-world anima-
tion pipelines.

2. Related works

2.1. Skeleton generation

There are two categories of methods for creating skeletons
in 3D models. The first category relies on predefined tem-
plates [3, 22] or additional annotations [10, 18, 21, 44].
Pinocchio [3] is a pioneering method for automatically ex-
tracting an animation skeleton from an input 3D model. It
fits a predefined skeleton template to the 3D model, evalu-
ating the fitting cost for different templates and selecting
the most suitable one for a given model. Li et al. [22]
proposed a deep learning-based method to estimate joint
positions for a given human skeletal template. However,
these template-based methods are limited to rigging char-
acters whose articulation structures are compatible with the
predefined templates, making it difficult to generalize to ob-
jects with distinct structures.
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There are also methods that rely on additional inputs or
annotations to generate skeletons for 3D models, includ-
ing point cloud sequences [44], mesh sequences [10, 21],
and manual annotations [18]. Additionally, recent works
[34, 35, 45, 47–49] have focused on learning the joints and
bones of articulated objects directly from videos to recon-
struct object motion. In contrast, our approach aims to gen-
erate skeletons using only 3D models as input.

The second category consists of template-free methods
that operate without relying on predefined templates or ad-
ditional annotations. Many approaches [2, 6, 17, 24, 36]
are designed to extract curve skeletons from meshes or
point clouds by utilizing the medial axis or the centerline of
shapes. These methods often result in densely packed joints
that are unsuitable for effective articulation and animation.
Recent deep-learning approaches have also been developed
to learn skeletons directly from input shapes without rely-
ing on predefined templates. These methods are generally
trained on datasets containing thousands of rigged charac-
ters, allowing them to generate skeletons that align with ar-
ticulated components. For instance, Xu et al. [42] intro-
duced a volumetric network designed to generate skeletons
for input 3D models. RigNet [43] leverages graph convolu-
tions to learn mesh representations, thereby enhancing the
accuracy of skeleton extraction. However, it relies on the
strong assumption that the input training and test shapes
maintain a consistent upright and front-facing orientation.

In this work, we formulate skeleton generation as an
auto-regressive problem to accommodate the varying num-
ber of bones in different 3D models. By generating bones
auto-regressively, our method dynamically adapts to each
model’s specific requirements, ensuring flexibility and ac-
curacy in skeleton creation.

2.2. Skinning weight prediction

To make 3D models ready for articulation, we also predict
skinning weights conditioned on the 3D shape and corre-
sponding skeleton, which define the influence of each joint
on each vertex of the mesh.

Several geometric-based techniques have been intro-
duced for skinning [3, 13, 14, 20]. These methods assign
skinning weights based on the distance between joints and
vertices. However, this distance-based assumption often
fails when the 3D shape has a complex topology. Deep
learning-based methods [23, 25, 27, 43], such as Neu-
roSkinning [25], take a skeleton template as input and pre-
dict skinning weights using a learned graph neural network.
RigNet [43] utilizes intrinsic shape representations that cap-
ture geodesic distances between vertices and bones, often
struggles with highly intricate mesh topologies and may
require extensive feature engineering to maintain perfor-
mance across varied object categories. SkinningNet [27]
employs a two-stream graph neural network to compute

skinning weights directly from input meshes and the cor-
responding skeletons. However, the performance of these
GNN-based methods can degrade when applied to datasets
with highly varying orientations, such as Articulation-XL,
leading to reduced accuracy and robustness in complex and
varied scenarios.

In this work, we predict skinning weights in a functional
diffusion process by incorporating volumetric geodesic dis-
tance priors between vertices and joints. This approach
effectively handles complex mesh topologies and diverse
skeletal structures without the constraints of shape orien-
tations.

2.3. Auto-regressive 3D generation
Recently, auto-regressive models have been widely used
in 3D mesh generation [7–9, 28, 30, 37, 41]. MeshGPT
[30] models meshes as sequences of triangles and to-
kenizes them using a VQ-VAE [39]. It then employs
an auto-regressive transformer to generate the token se-
quences. This approach enables the creation of meshes
with varying face counts. However, most subsequent meth-
ods [7, 8, 41] are limited to generating meshes up to 800
faces, due to the computational cost of mesh tokeniza-
tion. MeshAnythingV2 [9] introduces Adjacent Mesh To-
kenization (AMT), doubling the maximum face count to
1,600. EdgeRunner [37] further increases this limit to 4,000
faces by enhancing mesh tokenization techniques. In this
work, we explore the potential of auto-regressive models
for shape-conditioned skeleton generation. To achieve this,
we formulate skeletons as sequences of bones. Unlike mesh
generation, which focuses on creating detailed and realistic
shapes by utilizing a high number of faces, skeleton gener-
ation prioritizes accuracy over complexity. Accurate skele-
tons are crucial for realistic articulation and animation, and
typically consist of fewer than 100 bones, as indicated by
the statistics in Articulation-XL.

3. Articulation-XL
To facilitate large-scale learning of 3D model articulation,
we present Articulation-XL, a comprehensive dataset cu-
rated from Objaverse-XL [11, 12]. Our dataset construc-
tion pipeline consists of three main stages: initial filtering,
VLM-based filtering, and category annotation. We will re-
lease our Articulation-XL to facilitate future work.

Initial data collection. We begin by identifying 3D models
from Objaverse-XL that contain both skeleton and skinning
weight annotations. To ensure data quality and practical
utility, we apply the following filtering criteria: 1) we re-
move duplicate data based on both skeleton and mesh sim-
ilarity; 2) we exclude models with only a single joint/bone
structure; 3) we filter out data with more than 100 bones,
which constitute a negligible portion of the dataset. This

3



character
anthropomorphic

animal

mythical creature

toy

clothingtool

miscellaneous

scanned dataplant

accessories

vehicle

electronic device

sc
u

lp
tu

re

food

household items

planet

sporting goods

musical instrument paper

armor

robot

(a) Word cloud of Articulation-XL cate-
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Figure 2. Articulation-XL statistics.
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Figure 3. Some examples from Articulation-XL alongside ex-
amples of poorly defined skeletons that were curated out.

initial filtering yields 38.8k candidate models with articula-
tion annotations.

VLM-based filtering. However, we observe that many ini-
tial candidates contain poorly defined skeletons that may
impair learning (see Figure 3). To ensure dataset quality, we
further implement a Vision-Language Model (VLM)-based
filtering pipeline: 1) we render each object with its skele-
ton from four viewpoints; 2) and then utilize GPT-4o [29]
to assess skeleton quality based on specific criteria (detailed
in supplementary). This process results in a final collection
of over 33k 3D models with high-quality articulation anno-
tations, forming the curated dataset Articulation-XL 1. The
dataset exhibits diverse structural complexity: the number
of bones per model ranges from 2 to 100, and the number
of joints ranges from 3 to 101. The distribution of bone
numbers is illustrated in Figure 2c.

Category label annotation. Additionally, we also lever-
age a Vision-Language Model (VLM) to automatically as-

1We have expanded the dataset to over 48K models in Articulation-
XL2.0. For further details, please refer to https://huggingface.
co/datasets/chaoyue7/Articulation-XL2.0.

sign category labels to each model using specific instruc-
tions. The distribution of these categories is illustrated via a
word cloud and a pie chart, as shown in Figure 2a and Fig-
ure 2b, respectively. We observe a rich diversity of object
categories, with human-related models forming the largest
subset. Detailed statistics and distribution analyses are pro-
vided in the supplementary material.

4. Methods

We propose a two-stage pipeline to make 3D models
articulation-ready. Given an input 3D mesh, our method
first employs an auto-regressive transformer to generate a
structurally coherent skeleton (Section 4.1). Subsequently,
we predict skinning weights in a functional diffusion pro-
cess, conditioning on both the input shape and its corre-
sponding skeleton (Section 4.2).

4.1. Auto-regressive skeleton generation
In the initial stage of MagicArticulate, we generate skele-
tons for 3D models. Unlike previous approaches that rely on
fixed templates, our method can handle the inherent struc-
tural diversity of 3D objects through an auto-regressive gen-
eration framework, as presented in Figure 5.

4.1.1. Problem formulation
Given an input 3D mesh M, our goal is to generate a struc-
turally valid skeleton S that captures the articulation struc-
ture of the object. A skeleton consists of two key compo-
nents: a set of joints J ∈ Rj×3 defining spatial locations,
and bone connections B ∈ Nb×2 specifying the topological
structure through joint indices. Formally, we aim to learn
the conditional distribution:

p(S|M) = p(J,B|M), (1)

where M can be sourced from various inputs, including di-
rect 3D models, text-to-3D generation, or image-based re-
construction.
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Figure 4. Overview of our method for auto-regressive skeleton generation. Given an input mesh, we begin by sampling point clouds
from its surface. These sampled points are then encoded into fixed-length shape tokens, which are appended to the start of skeleton tokens
to achieve auto-regressive skeleton generation conditioned on input shapes. The input mesh is generated by Rodin Gen-1 [50].

A key challenge in skeleton generation lies in the vari-
able complexity of articulation structures across different
objects. Traditional approaches [3, 22] often adopt pre-
defined skeleton templates, which work well for specific
categories like human bodies but fail to generalize to ob-
jects with diverse structural patterns. This limitation be-
comes particularly apparent when dealing with our large-
scale dataset that contains a wide range of object categories.

To address this challenge, we draw inspiration from re-
cent advances in auto-regressive mesh generation [9, 30]
and reformulate skeleton generation as a sequence model-
ing task. This novel formulation allows us to: 1) handle
varying numbers of bones or joints within skeletons across
different 3D models; 2) capture the inherent dependencies
between bones; 3) scale effectively to diverse object cate-
gories.

4.1.2. Sequence-based generation framework
Our framework transforms the skeleton generation task into
a sequence modeling problem through four key compo-
nents: skeleton tokenization, sequence ordering, shape con-
ditioning, and auto-regressive generation.

Skeleton tokenization. We represent each skeleton S as a
sequence of bones, where each bone is defined by its two
connecting joints (6 coordinates in total). To ensure con-
sistent and discrete representation, we employ a carefully
designed tokenization process. We first scale and trans-
late the input mesh and corresponding skeleton to a unit
cube [−0.5, 0.5]3, ensuring their spatial alignment. Subse-
quently, we map the normalized joint coordinates to a dis-
crete 1283 space, leading to a sequence length of 6b for b
bones. As such, the discretized coordinates are converted
into tokens, which serve as input to the auto-regressive
transformer. Unlike MeshGPT [30], we omit the VQ-VAE
compression step based on our dataset analysis. Specifi-
cally, in Articulation-XL, most of the models have fewer

2

43

1

5 6

7 8

9

10

11

12 13
14

15 16 17 18 19 20

21

Spatial sequence ordering

Hierarchical sequence ordering

2

43

1

2

43

1

5 6

7 8

2

43

1

5 6

7 8

9

10

11

1 2

3

87

4 5

1 2

3

6

10

9

11

12 13
14

20 18 15 16 19 21

17

4 5

1 2

3

6

87

4 5

1 2

3

6

9

Figure 5. Spatial sequence ordering versus hierarchical se-
quence ordering. The numbers indicate the bone ordering in-
dices.

than 100 bones (i.e., 600 tokens). Given these relatively
short sequence lengths, using VQ-VAE compression would
potentially introduce artifacts without significant benefits in
computational efficiency.

Sequence ordering. In this work, we investigate two dis-
tinct ordering strategies. Our first approach follows the se-
quence ordering strategy from recent 3D mesh generation
methods [28, 30]. In this approach, joints are initially sorted
in ascending z-y-x order (with z representing the vertical
axis), and the corresponding joint indices in the bones are
updated accordingly. Bones are then ordered first by their
lower joint index and subsequently by the higher one. Ad-
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ditionally, for each bone, the joint indices are cyclically per-
muted so that the lower index appears first. we refer to this
ordering as spatial sequence ordering in this paper. How-
ever, this ordering strategy disrupts the parent-child rela-
tionships among bones and does not facilitate identifying
the root joint. Consequently, additional processing is re-
quired to build the skeleton’s hierarchy.

To overcome these limitations, we propose an alternative
approach termed hierarchical sequence ordering2, which
leverages the intrinsic hierarchical structure of the skeleton
by processing bones layer by layer. After sorting joints in
ascending z-y-x order and updating their indices in bones,
we first order the bones directly connected to the root joint.
When the root has several child joints, we begin with the
bone linked to the child joint having the smallest index and
then proceed in ascending order. For subsequent layers,
bones are grouped by their immediate parent, and within
each group, they are arranged in ascending order based on
the child joint index. Additionally, among groups in the
same layer, the group corresponding to the smallest parent
joint index is processed first, followed by those with larger
indices.

Shape-conditioned generation. Following the conventions
in [8, 9], we utilize point clouds as the shape condition by
sampling 8,192 points from the input mesh M. We then
process this point cloud through a pre-trained shape en-
coder [52], which transforms the raw 3D geometry into a
fixed-length feature sequence suitable for transformer pro-
cessing. This encoded sequence is then appended to the
start of the transformer’s input skeleton sequence for auto-
regressive generation. Additionally, for each sequence, we
insert a <bos> token after the shape latent tokens to signify
the beginning of the skeleton tokens. Similarly, a <eos> to-
ken is added following the skeleton tokens to denote the end
of the skeleton sequence.

Auto-regressive learning. For skeleton generation, we
employ a decoder-only transformer architecture, specifi-
cally the OPT-350M model [51], which has demonstrated
strong capabilities in sequence modeling tasks. During
training, we provide the ground truth sequences and utilize
cross-entropy loss for next-token prediction to supervise the
model:

Lpred = CE(T, T̂), (2)

where T represents the one-hot encoded ground truth token
sequence, and T̂ denotes the predicted sequence.

At inference time, the generation process begins with
only the shape tokens as input, and the model sequentially
generates each skeleton token, ending when the <eos> to-
ken is produced. The resulting token sequence is then deto-
kenized to recover the final skeleton coordinates and con-
nectivity structure.

2Hierarchical ordering is an extension of our under review version.

4.2. Skinning weight prediction
The second stage focuses on predicting skinning weights,
which controls how the mesh deforms with skeleton move-
ments. In this work, we represent skinning weights as an n-
dimensional function defined on mesh surfaces, which are
continuous, high-dimensional, and exhibit significant vari-
ation across different skeletal structures. To address these
complexities, we employ a functional diffusion framework
for accurate skinning weight prediction.

4.2.1. Preliminary: Functional diffusion
Functional diffusion [46] extends classical diffusion mod-
els to operate directly on functions, making it particularly
suitable for our task. Consider a function f0 mapping from
domain X to range Y:

f0 : X → Y. (3)

The diffusion process gradually adds functional noise g
(mapping the same domain to range) to the original func-
tion:

ft(x) = αt · f0(x) + σt · g(x), t ∈ [0, 1] (4)

where αt and σt control the noise schedule. The goal is to
train a denoiser D that recovers the original function:

Dθ[ft, t](x) ≈ f0(x). (5)

This formulation naturally aligns with our task require-
ments. By treating skinning weights as continuous func-
tions over the mesh surface, we can capture smoothly tran-
sitioning weights between vertices. Additionally, the frame-
work’s flexibility allows it to adapt to diverse mesh topolo-
gies and skeletal structures.

4.2.2. Skinning weight prediction
Building upon the functional diffusion framework, we for-
mulate skinning weight prediction as learning a mapping
f : R3 → Rn from 3D points to their corresponding
weights. Specifically, the input to our model consists of
3D points P ∈ Rv×3 sampled from the surface of the
mesh. The output is an n-dimensional skinning weight ma-
trix W ∈ Rv×n. Here, the ground truth skinning weights
of sampled points for training are copied from their near-
est vertices and will also be copied back when inference. n
denotes the maximum number of joints in the dataset.

To enhance prediction accuracy, we introduce two key
components. First, we condition the generation on both
joint coordinates and global shape features extracted by a
pre-trained encoder [52]. Second, we leverage volumetric
geodesic priors calculated from [13]. Specifically, we com-
pute the volumetric geodesic priors from each mesh ver-
tex to each joint. We then assign these priors to sampled
points based on their nearest vertices and normalize them to
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match the range of skinning weights, forming a volumetric
geodesic matrix G ∈ Rv×n. Our model learns to predict the
residual between the actual skinning weights and this geo-
metric prior, i.e., f : P → (W − G), enabling more stable
predictions.

Following [46], we optimize our model using x0-
prediction with the objective:

Ldenoise = ∥Dθ ({x, ft(x)} , t)− f0(x)∥22 , x ∈ P.
(6)

We employ the Denoising Diffusion Probabilistic Model
(DDPM) [16] as our scheduler. In practice, we normalize
the skinning weights and volumetric geodesic priors to the
range [−1, 1] before adding noise. We will conduct ablation
studies on this design in Section 5.4.2.

5. Experiments
5.1. Implementation details

Datasets. We evaluate our method on two datasets: our
proposed Articulation-XL and ModelsResource [38, 43].
Articulation-XL contains 33k samples, with 31.4k for train-
ing and 1.6k for testing. ModelsResource is a smaller
dataset, containing 2,163 training and 270 testing samples.
The number of joints for each object varies from 3 to 48,
with an average of 25.0 joints. While the data in ModelsRe-
source maintains a consistent upright and front-facing ori-
entation, the 3D models in Articulation-XL exhibit varying
orientations. We have verified that there are no duplications
between Articulation-XL and ModelsResource.

Training details. Our training process consists of two
stages. For skeleton generation, we train the auto-regressive
transformer on 8 NVIDIA A100 GPUs for approximately
two days. For skinning weight prediction, models are
trained on the same hardware configuration for about one
day. To enhance model robustness, we apply data augmen-
tation including scaling, shifting, and rotation transforma-
tions. For more details, please refer to the appendix.

5.2. Skeleton generation results

Metrics. We adopt three standard metrics following [43] to
evaluate skeleton quality: CD-J2J, CD-J2B, and CD-B2B.
These Chamfer Distance-based metrics measure the spatial
alignment between generated and ground truth skeletons
by computing distances between joints-to-joints, joints-to-
bones, and bones-to-bones respectively. Lower values indi-
cate better skeleton quality.

Baselines. We compare our method against two represen-
tative approaches: Pinocchio [3], a traditional template-
fitting method, and RigNet [43], a learning-based method
using graph convolutions. All methods are evaluated on the
Articulation-XL and ModelsResource datasets.

Table 1. Quantitative comparison on skeleton generation. We
compare different methods using CD-J2J, CD-J2B, and CD-B2B
as evaluation metrics on both Articulation-XL (Arti-XL) and Mod-
elsResource (Modelres.). Lower values indicate better perfor-
mance. The metrics are in units of 10−2. Here, * denotes models
trained on Articulation-XL and tested on ModelsResource.

Dataset CD-J2J CD-J2B CD-B2B

RigNet*

ModelsRes.

7.132 5.486 4.640
Pinocchio 6.852 4.824 4.089
Ours-hier* 4.451 3.454 2.998

RigNet 4.143 2.961 2.675
Ours-spatial* 4.103 3.101 2.672

Ours-hier 3.654 2.775 2.412
Ours-spatial 3.343 2.455 2.140

Pinocchio

Arti-XL

8.360 6.677 5.689
RigNet 7.478 5.892 4.932

Ours-hier 3.025 2.408 2.083
Ours-spatial 2.586 1.959 1.661

Comparison results. Qualitative comparisons are pre-
sented in Figure 6, where we compare different methods
across various object categories. Pinocchio struggles with
objects that differ from its predefined templates, especially
obvious in non-humanoid objects (as shown in the 2nd
row and the 3rd row on the right). RigNet demonstrates
improved performance when tested on ModelsResource,
where the data maintains a consistent upright and front-
facing orientation. However, it still struggles with complex
topologies (as illustrated in the 1st and 2nd rows on the left).
Furthermore, RigNet performs worse on Articulation-XL,
where the data exhibit varying orientations. In contrast, our
method generates high-quality skeletons that closely match
artist-created references across diverse object categories.

The quantitative results are shown in Table 1. Our
method consistently outperforms baselines across all met-
rics on both datasets. Additionally, we compare our method
using both spatial and hierarchical ordering strategies. The
spatial ordering consistently achieves better performance,
likely because the hierarchical ordering requires the model
to allocate part of its capacity to learning the skeleton’s hi-
erarchy and identifying the root joint. Results obtained us-
ing spatial ordering are well-suited for applications such as
skeleton-driven pose transfer [47], whereas those derived
from hierarchical ordering are more readily integrated with
3D models for animation.

Generalization analysis. To evaluate the generalization
capability, we perform cross-dataset evaluation by training
RigNet and our MagicArticulate on Articulation-XL and
testing on ModelsResource. As shown in Table 1 (marked
with *), our method maintains competitive performance
compared to RigNet trained directly on ModelsResource,
while RigNet’s performance degrades significantly when
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Figure 6. Comparison of skeleton creation results on ModelsResource (left) and Articulation-XL (right). Our generated skeletons
more closely resemble the artist-created references, while RigNet and Pinocchio struggle to handle various object categories.

tested on unseen data distributions, performing even worse
than the template-based method Pinocchio.

To further assess real-world applicability, we evaluate all
methods on AI-generated 3D meshes from Tripo 2.0 [1]
(Figure 7). Our method successfully generates plausible
skeletons for diverse object categories, while RigNet fails
to produce valid results despite being trained on our large-
scale dataset. Notably, even Pinocchio’s template-based ap-
proach struggles to generate accurate skeletons for basic
categories like humans and quadrupeds, highlighting the ad-
vantage of our method in handling novel object structures.

5.3. Skinning weight prediction results

Metrics. We evaluate skinning weight quality using three
metrics: precision, recall, and L1-norm error. Precision and
recall measure the accuracy of identifying significant joint
influences (defined as weights larger than 1e− 4 following
[43], while the L1-norm error computes the average differ-
ence between predicted and ground truth skinning weights
across all vertices. We will also report the deformation error
in appendix.

Baselines. We compare our method against Geodesic Voxel
Binding (GVB) [13], a geometric-based method available
in Autodesk Maya [19] and RigNet [43]. When trained
on Articulation-XL, we filter out a subset containing 28k
training and 1.2k testing samples, excluding data with more
than 55 joints (which constitute a small fraction of both real-
world cases and Articulation-XL).

Comparison results. Qualitative comparisons in Figure 8
visualize the predicted skinning weights and their L1 error

3D generated meshes Ours RigNet Pinocchio

Figure 7. Skeleton creation results on 3D generated meshes.
Our method has a better generalization performance than both
RigNet [43] and Pinocchio [3] across difference object categories.
The 3D models are generated by Tripo 2.0 [1].

maps against artist-created references. Our method predicts
more accurate skinning weights with significantly lower er-
rors across diverse object categories. In contrast, both GVB
and RigNet show larger deviations, particularly in regions
around joint boundaries.

The quantitative results are shown in Table 2, which
support qualitative observations, demonstrating that our
method consistently outperforms baselines across most
metrics on both datasets.
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Artist-painted
Skinning weights Error map Skinning weights Error map Skinning weights Error map

Ours RigNet GVB

Figure 8. Comparisons with previous methods for skinning weight prediction on ModelsResource (top) and Articulation-XL (bot-
tom). We visualize skinning weights and L1 error maps. For more results, please refer to the supplementary materials.

Table 2. Quantitative comparison on skinning weight predic-
tion. We compare our method with GVB and RigNet. For Pre-
cision and Recall, larger values indicate better performance. For
average L1-norm error, smaller values are preferred.

Dataset Precision Recall avg L1

GVB
ModelsResource

69.3% 79.2% 0.687
RigNet 77.1% 83.5% 0.464
Ours 82.1% 81.6% 0.398

GVB
Articulation-XL

75.7% 68.3% 0.724
RigNet 72.4% 71.1% 0.698
Ours 80.7% 77.2% 0.337

Table 3. Ablation studies for skeleton generation.

CD-J2J CD-J2B CD-B2B

w/o data filtering 2.982 2.327 2.015

4,096 points 2.635 2.024 1.727
12,288 points 2.685 2.048 1.760
Ours (8,192) 2.586 1.959 1.661

5.4. Ablation studies
5.4.1. Ablation studies on skeleton generation
We conduct ablation studies to assess the impact of VLM-
based data filtering and the number of sampled mesh points
on skeleton generation. The results, presented in Table 3,
show notable performance degradation without data filter-
ing, highlighting the importance of high-quality training
data. We also vary the number of sampled points as input
to the pre-trained shape encoder [52]. As shown in Table 3,
sampling 8,192 points yields superior performance.

Table 4. Ablation studies on skinning weight prediction.

Precision Recall avg L1

w/o geodesic dist. 81.5% 77.7% 0.444
w/o weights norm 82.0% 77.9% 0.436
w/o shape features 81.4% 81.3% 0.412

Ours 82.1% 81.6% 0.398

5.4.2. Ablation studies on skinning weight prediction
We conduct ablation studies on three critical components of
our skinning weight prediction framework. The quantita-
tive results on ModelsResource are shown in Table 4. First,
removing the volumetric geodesic distance initialization re-
duces precision by 0.6% and recall by 3.9%, demonstrating
its crucial role in guiding accurate weight distribution. Sec-
ond, eliminating our normalization strategy, which scales
both skinning weights and geodesic distances to [−1, 1] be-
fore noise addition, leads to an 8.7% increase in L1 er-
ror. Finally, excluding global shape features from the pre-
trained encoder [52] results in less accurate predictions. All
these results validate our design choices and show that each
component contributes notably to the final performance.

6. Conclusion
In this work, we present MagicArticulate to convert static
3D models into articulation-ready assets that support re-
alistic animation. We first introduce a large-scale dataset
Articulation-XL with high-quality articulation annotations,
which is carefully curated from Objaverse-XL. Built upon
this dataset, we develop a novel two-stage pipeline that first
generates skeletons through auto-regressive sequence mod-
eling, naturally handling varying numbers of bones or joints

9



within skeletons across different 3D models. Then we pre-
dict skinning weights in a functional diffusion process that
incorporates volumetric geodesic distance priors between
vertices and joints. Extensive experiments demonstrate our
method’s superior performance and generalization ability
across diverse object categories.
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MagicArticulate: Make Your 3D Models Articulation-Ready

Supplementary Material

Overview
In this supplementary material, we provide additional de-
tails and experimental results for the main paper, including:
• Further details of MagicArticulate (Section 7) and

Articulation-XL (Section 9);
• Additional experimental results on skeleton generation

and skinning weight prediction (Section 8);
• A discussion of the limitations of our work and future

works (Section 10).

7. More details of MagicArticulate
7.1. Implementation details

Skeleton generation. Our skeleton generation pipeline
utilizes a pre-trained shape encoder [52] to process input
meshes. For each mesh, we sample 8,192 points which
are encoded into 257 shape tokens following MeshAnything
[8]. To ensure consistent point cloud sampling across differ-
ent data sources, we first extract the signed distance func-
tion from input mesh using [40], followed by generating
a coarse mesh via Marching Cubes [26]. We then sam-
ple point clouds and their corresponding normals from this
coarse mesh.

For training on Articulation-XL, we use 8 NVIDIA
A100 GPUs for approximately two days with a batch size
of 64 per GPU, resulting in an effective batch size of 512.
When training on ModelsResource, we utilize 4 NVIDIA
A100 GPUs for about 9 hours with a batch size of 32 per
GPU, which yields an effective batch size of 128. Dur-
ing inference, the model generates skeleton tokens auto-
regressively from shape tokens until reaching the <eos>
token, followed by detokenization to recover the final skele-
ton coordinates in [−0.5, 0.5] range.

Skinning weight prediction. Our functional diffu-
sion model employs the Denoising Diffusion Probabilis-
tic Model (DDPM) with 1,000 timesteps and a linear beta
schedule. During training, we condition the model on
ground truth skeletons and supervise it with corresponding
ground truth skinning weights. We add noise to the skinning
weight function (the process is illustrated in Figure S10) and
then feed the noised skinning weights into our denoising
network (Figure S9). Following [46], our network architec-
ture processes the noised set {(x, ft(x)) | x ∈ P} by split-
ting it into smaller subsets and handling them through mul-
tiple cross-attention stages. The time embedding at timestep
t is incorporated into each self-attention layer via adaptive
layer normalization. For visual clarity, Figure S9 shows
only one processing stage.

We train the model on Articulation-XL using 8 NVIDIA
A100 GPUs for approximately one day, with a batch size of
16 per GPU (effective batch size 128). Training on Mod-
elsResource uses the same configuration for about 4 hours.
During inference, we perform 25 denoising steps to gen-
erate predictions W ∈ Rv×n in the range [−1, 1]. These
results are then normalized to [0, 1], ensuring that each row
of the skinning weight matrix sums to 1. To handle vary-
ing joint counts across different models, we employ a valid
joint mask during both training and testing, with a maxi-
mum joint count of 55 as discussed in the main paper (Sec-
tions 4.2 and 5.3).

7.2. Experimental details
For baseline comparisons, we use the implementations of
RigNet [43] and Pinocchio [3] from the GitHub reposito-
ries3. The Geodesic Voxel Binding (GVB) [13] comparison
is conducted using the implementation in Autodesk Maya
[19]. When training RigNet on our Articulation-XL, we
strictly follow the authors’ data processing pipeline and six-
stage training strategy as specified in their official imple-
mentation.

7.3. Animation
Many recent works have explored 3D animation, includ-
ing skeleton-free pose transfer [23, 31, 32], skeleton-driven
pose transfer [47], and physics-driven animation [15]. In
this paper, we propose a method that enables automatic
articulation generation for any input 3D model, whether
artist-created or AI-generated. The pipeline first generates a
skeleton for the input model, then predicts skinning weights
conditioned on both the model geometry and the generated
skeleton. The resulting articulated model can be exported in
standard formats (e.g., FBX, GLB), making it directly com-
patible with popular animation software such as Blender [4]
and Autodesk Maya [19].

8. Additional experimental results
8.1. More results of skeleton generation
We provide additional qualitative comparisons among
MagicArticulate, RigNet [43], and Pinocchio [3] for skele-
ton generation.

More qualitative results on out-of-domain data. We
evaluate our method’s generalization capability on diverse
out-of-domain data sources: AI-generated meshes from

3https://github.com/zhan- xu/RigNet, https://
github.com/haoz19/Automatic-Rigging
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Figure S9. Overview of the function diffusion architecture for skinning weight prediction. Given a set of noised skinning weight
functions {(x, ft(x)) | x ∈ P}, conditioned on skeleton and shape features from [52], we denoise the skinning weight functions to
approximate the target weights.

Table S5. Quantitative comparison on skinning weight prediction. We compare our method with GVB and RigNet. For Precision and
Recall, larger values indicate better performance. For average L1-norm error and average distance error, smaller values are preferred.

Dataset Precision Recall avg L1 avg Dist.

GVB
ModelsResource

69.3% 79.2% 0.687 0.0067
RigNet 77.1% 83.5% 0.464 0.0054
Ours 82.1% 81.6% 0.398 0.0039

GVB
Articulation-XL

75.7% 68.3% 0.724 0.0095
RigNet 72.4% 71.1% 0.698 0.0091
Ours 80.7% 77.2% 0.337 0.0050

Tripo2.0 [1], unregistered 3D scans from FAUST [5], and
video-based 3D reconstructions [34]. As shown in Fig-
ure S11, while existing methods struggle with generaliza-
tion (RigNet fails across all cases, and Pinocchio shows
misalignments even for human bodies, see skeleton results
on the 3D scan), our method maintains robust performance
across different data sources and categories. Notably, for
human models, our method generates more detailed skele-
tal structures, including accurate hand skeletons, surpassing
Pinocchio’s template-based results.

More qualitative results on Articulation-XL and Mod-
elsResource. We provide additional qualitative results on
both Articulation-XL and ModelsResource datasets. As il-
lustrated in Figure S12, our method consistently generates
high-quality skeletons that accurately match artist-created
references across diverse object categories.

Robustness to various mesh orientations. To further val-

idate our model’s robustness to various orientations, we
include mesh rotations at multiple angles in Figure S13.
These examples show that our approach remains largely
rotation-stable. While minor skeleton variations may oc-
cur, all generated results maintain anatomically valid and
suitable for rigging purposes.

8.2. More results of skinning weight prediction

Quantitative results with deformation error. Beyond the
precision, recall, and L1-norm metrics reported in the main
paper, we evaluate the practical effectiveness of predicted
skinning weights through deformation error analysis. This
metric computes the average Euclidean distance between
vertices deformed using predicted weights and ground truth
weights across 10 random poses. The comprehensive re-
sults, shown in Table S5, demonstrate our method’s supe-
rior performance across most metrics on both datasets. We
also include deformation error analysis in our ablation stud-
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Table S6. Ablation studies on ModelsResource for skinning weight prediction.

Precision Recall avg L1 avg Dist.

w/o geodesic dist. 81.5% 77.7% 0.444 0.0046
w/o weights norm 82.0% 77.9% 0.436 0.0045
w/o shape features 81.4% 81.3% 0.412 0.0042

Ours 82.1% 81.6% 0.398 0.0039

Table S7. Object counts for each category in the Articulation-XL dataset.

Category # Objects Category # Objects Category # Objects

character 16020 miscellaneous 584 architecture 132
anthropomorphic 13393 scanned data 546 planet 49

animal 4760 plant 382 paper 46
mythical creature 4734 accessories 293 musical instrument 25

toy 1360 vehicle 283 sporting goods 21
weapon 1257 sculpture 276 armor 13
anatomy 1227 household items 274 robot 4
clothing 595 food 206

Figure S10. Process of adding noise to the skinning weight
function. Given x ∈ P and the original skinning weight func-
tion f0(x), we add the noise function g(x) to obtain the noised
function ft(x).

ies (Table S6), further validating the effectiveness of our
design choices.

More qualitative results. We present additional qualitative
comparisons between MagicArticulate, RigNet [43], and
Geodesic Voxel Binding (GVB) [13] for skinning weight
prediction. Figure S14 shows both the predicted skinning
weights and their L1 error maps compared to artist-created
references, demonstrating our method’s superior accuracy
across diverse object categories.

9. More details of Articulation-XL

9.1. Data Curation

Our dataset curation process filters out duplicates, objects
with extreme joint/bone counts, and multi-component ob-
jects. A detailed category-wise object distribution is pro-
vided in Table S7.

9.2. Quality assessment

We employ GPT-4o [29] for quality assessment of skeleton
annotations. For each model, we generate four-view renders
using Pyrender4 showing both the 3D model and its skeleton
(Figure S17). These renders are evaluated using specific
quality criteria detailed in Figure S15.

9.3. Category annotation

For the Visual-Language Model (VLM)-based category la-
beling, we render each 3D model along with its normal
maps from four viewpoints using Blender [4] (see example
in Figure S18). We then utilize GPT-4o [29] to classify the
categories of the 3D models based on specific instructions,
as outlined in Figure S16.

10. Limitations and future work

Despite its strong performance, our method has several no-
table limitations. First, our approach struggles with coarse
mesh inputs, often producing inaccurate skeletons as shown
in Figure S19. While we employ preprocessing techniques

4https://github.com/mmatl/pyrender
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Figure S11. Comparison of skeleton generation methods on out-of-domain data. The input meshes are from 3D generation, 3D scan,
and 3D reconstruction.
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Artist-created Ours RigNet Pinocchio PinocchioRigNetOursArtist-created

Figure S12. Comparison of skeleton generation methods on ModelsResource (left) and Articulation-XL (right). Our results more
closely resemble the artist-created references, while RigNet and Pinocchio struggle to handle various object categories.

Original 45° y-axis 135° x-axis90° z-axis

Figure S13. Skeleton results on 3D models with different orien-
tations. Although minor differences may appear in the generated
skeletons, all results maintain anatomically valid and suitable for
rigging purposes.

to handle inputs from different sources, the significant do-
main gap between training data and coarse meshes remains
challenging. Potential solutions include incorporating mesh
quality augmentation during training to enhance robustness.

A second limitation lies in our dataset composition. Al-
though Articulation-XL is large in scale, it lacks sufficient
coverage of common articulated objects like laptops, sta-
plers, and scissors, which affects our model’s generalization
to these categories.

Future work will address these limitations by: 1) De-
veloping more robust preprocessing and training strategies
for handling varying mesh qualities; 2) Expanding dataset
coverage to include a broader range of everyday articulated
objects; 3) Exploring techniques to better bridge the domain
gap between different data sources.
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Figure S14. Comparison of skinning weight prediction methods on ModelsResource (first three rows) and Articulation-XL (last
three rows). We visualize the predicted skinning weights alongside their corresponding L1 error maps.
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# Task Description:
Our task is to evaluate the quality of the skeleton within a 3D object using an image that contains four sub-images rendered from 

both the 3D mesh and its skeleton together. The four sub-images are arranged in a 2x2 grid format. These sub-images are rendered 

from four distinct views of the 3D object. In the images, bones are represented by blue cylinders, and joints are represented by red 

spheres.

# Instructions:
1. Carefully examine the provided image, which contains four different sub-images of the 3D object and its skeleton.

2. Provide a detailed critique of the skeleton within the 3D object based on the following criteria:    

      Joint and Bone Position Relative to Mesh:       

             Identify joints or bones that are excessively protruding out of the mesh. A high-quality skeleton should have both joints 

and bones confined within the mesh boundary. The more joints or bones that protrude, the lower the quality. Since the joint spheres 

and bone cylinders have a radius, you should consider their centers without accounting for their shapes.

      Anatomical Accuracy:        

             Correct Joint Placement: Joints should mimic the anatomical placement. For example, shoulder joints should align with the 

mesh’s shoulder region.        

             Natural Poses: The skeleton should maintain natural and plausible poses. Any significant deviations might indicate errors 

in skeletal rigging.

3. Based on your analysis, provide a rating for each criterion using the following three options. Ensure that the decision aligns with 

your detailed critique.

    Poor: Poor quality, significant issues or errors that severely impact the skeleton's usability or appearance.    

    Average: Average quality, some issues or errors that moderately impact the skeleton's usability or appearance.    

    Good: Good quality, no noticeable issues/errors or minor issues/errors that slightly impact the skeleton's usability or appearance.

4. Provide an overall rating for the skeleton within the 3D object based on the ratings for each criterion, with more weight given to 

Joint and Bone Position Relative to Mesh. If the skeleton has good performance on this part, it can be rated as good even if it has 

minor issues in other criteria. Ensure that the final rating is consistent with the individual scores and the overall critique. If the 

provided reasons for each criterion indicate a poor quality, the rating should reflect that. Ensure that the ratings and reasons are 

aligned.

5. Make sure to provide your evaluation following the example output format below.

# Example Output:

```Critique: 

Joint and Bone Position Relative to Mesh:    

- External Joints and Bones: Good. Most joints and bones are well confined within the mesh's boundary, with minimal protrusion 

observed.

Anatomical Accuracy:    

- Correct Joint Placement: Good. Joints are well-aligned with the mesh's primary structural points.    

- Natural Poses: Good. The skeleton maintains a natural and plausible pose, consistent with the object's intended design.

Final Rating: Good.

```

```Critique:

Joint and Bone Position Relative to Mesh:   

- External Joints and Bones: Poor. Several joints and bones, particularly in the lower section, are protruding significantly out of the 

mesh boundary.

Anatomical Accuracy:    

- Correct Joint Placement: Average. While most joints are correctly placed, some joints are noticeably out of alignment.    

- Natural Poses: Poor. The skeleton maintains an unnatural pose, with significant deviations observed.

Final Rating: Poor.

```

```Critique:

Joint and Bone Position Relative to Mesh:    

- External Joints and Bones: Average. Most joints and bones are positioned correctly within the mesh, but some joints, especially 

in the middle section, slightly protrude, affecting the alignment.

Anatomical Accuracy:    

- Correct Joint Placement: Average. Joints are generally placed close to the intended structural points, but there are minor 

misalignments that mildly impact the skeleton's accuracy.    

- Natural Poses: Average. The skeleton maintains a generally natural pose, but some joints appear slightly off, giving a somewhat 

unnatural appearance.

Final Rating: Average.

```

Figure S15. Input instructions to VLM for data filtering.
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# Task Description:
Our task is to evaluate the categories of a 3D object based on an image that contains eight sub-images rendered from this 3D object. 

The eight sub-images are concatenated in a 2x4 format. The top four images are its RGB images rendered from four different 

angles, and the bottom four are its normal maps rendered from four different angles.

# Instructions:
1. Carefully examine the provided image, which contains eight different sub-images of the 3D object. 

2. Classify the 3D object into one or more of the following categories:

    Character: Human or humanoid objects.

    Animal: Any kind of animal, including pets, wild animals, and mythical creatures.

    Furniture: Items like chairs, tables, beds, etc.

    Electronic Device: Specifically defined as 3C devices, such as phones, Apple Watch, TVs, and other consumer electronics.

    Mythical Creature: Strange creatures, monsters, elves, etc., including dragons and other legendary creatures.

    Anatomy: Parts of the human body or used for medical purposes.

    Tool: Instruments used to perform tasks, like hammers, screwdrivers, etc.

    Planet: Celestial bodies such as planets, moons, and other astronomical objects.

    Musical Instrument: Objects designed to produce music, such as guitars, pianos, drums, etc.

    Sculpture: Artistic objects created by carving, modeling, or assembling materials, often for decorative or artistic purposes.

    Jewelry: Decorative items worn for personal adornment, such as rings, necklaces, bracelets, etc.

    Accessory: Includes fashion accessories (can overlap with jewelry) and parts or recognizable parts of a larger object.

    Paper: Appears to be a flat texture with no thickness.

    Anthropomorphic: Objects with human-like features, even if they are essentially other types of items. For example, Donald 

Duck, although essentially a duck, can be marked as anthropomorphic due to its human-like features. Anything with hands and feet 

counts as anthropomorphic. A bell pepper with a smiley face but no hands or feet. A soda can with human-like features.

    Toy: Items designed for play, like dolls, action figures, etc.

    Clothing: Wearable items like shirts, pants, shoes, etc.

    Food: Edible items like fruits, vegetables, cooked dishes, etc.

    Scanned Data: Objects created from 3D scans. If the object appears to be a scanned model, classify it as scanned data and rate 

it accordingly.

    Architecture: Buildings and other structures.

    Vehicle: Cars, bikes, planes, boats, etc.

    Plant: Trees, flowers, shrubs, etc.

    Weapon: Items designed for combat, like swords, guns, archery, etc.

    Household Item: Common items used in daily life, like utensils, appliances, etc.

    Sporting Goods: Items used in sports and recreational activities, like balls, bats, etc.

    Miscellaneous: Objects that do not fit into any of the current categories but have a clear meaning.

3. Make sure to provide your evaluation following the example output format below. 

# Example Output:

```

Categories: furniture.

```

```

Categories: weapon.

```

```

Categories: scanned data, architecture.

```

```

Categories: Character.

```

Figure S16. Input instructions to VLM for category labeling.
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Figure S17. Input rendered examples to VLM for data filtering.

Figure S18. Input rendered examples to VLM for category la-
beling.

Input mesh Ours Input mesh Ours

Figure S19. Failure cases. When input meshes possess very
coarse surfaces (3D reconstruction results from [33]), our gener-
ated skeleton may exhibit inaccuracies, such as imperfect connec-
tions between the dog’s trunk and legs.
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