

Rig and Animate Your 3D Models

Chaoyue Song Nanyang Technological University

Why Rigging?

Clay

Tripo

Rigging definition

Linear blend skinning (LBS): $\mathbf{v}' = (\sum_{i=1}^{n} w_i T_i) \mathbf{v}$

Previous solutions

Manual rigging:

Manual rigging is time-consuming and requires significant expertise.

Automatic rigging:

- 1. Template-based
- 2. Template-free
- 3. Rely on additional inputs

Previous solutions: template-based

- Rely on predefined templates.
- Fit a predefined skeleton template to the 3D model by minimizing the fitting cost.
- Difficult to generalize across diverse categories.

Previous solutions: template-free

- Strong assumption that input shapes maintain a consistent upright and front-facing orientation.
- Difficult to scale up.
- Introduce a small dataset with less than 3k models.

Previous solutions: Summary

• the lack of a **large-scale**, **diverse** dataset for training generalizable models.

• the need for an effective framework capable of handling complex mesh topologies, accommodating varying skeleton structures.

Our solution: MagicArticulate

• Introduce **Articulation-XL**, a large-scale dataset containing over 33k 3D models with high-quality articulation annotations.

Formulate skeleton generation as a sequence modeling problem.

Predict skinning weights using a functional diffusion process.

Dataset: Articulation-XL

(a) Word cloud of Articulation-XL categories.

(b) Breakdown of Articulation-XL categories.

(c) Bone number distributions of Articulation-XL.

Dataset: Articulation-XL

- 1. Initial data collection (glb, fbx, dae, etc).
- 2. VLM-based filtering and manual review.
- 3. Category label annotation.

Table 1. Data statistics.

Source	All 3D data	with rigging	high quality rigging	low quality rigging
GitHub	2.08M	64K	42K	22K
Objaverse1.0	0.89M	10 K	6K	4K
Sum	2.97M	74K	48K	26K

Dataset: some examples

Auto-regressive skeleton generation

Skeleton sequence modeling

Modeling skeleton as a sequence of bones.

Skeleton tokenization: sequence of bones

$$B1 = (x1, y1, z1, x2, y2, z2)$$

$$B2 = (x2, y2, z2, x3, y3, z3)$$

normalization --> discretization --> 6b sequence

How to sort this sequence?

Sequence ordering

Spatial sequence ordering

Hierarchical sequence ordering

$$\mathcal{L}_{pred} = \mathrm{CE}(\mathbf{T}, \mathbf{\hat{T}})$$

Skinning weight prediction: functional diffusion

$$f_0: \mathcal{X} \to \mathcal{Y}$$
.

$$f_t(x) = \alpha_t \cdot f_0(x) + \sigma_t \cdot g(x), \quad t \in [0, 1]$$

$$D_{\theta}[f_t, t](x) \approx f_0(x).$$

Skinning weight prediction

$$f: \mathcal{P} \to (\mathcal{W} - \mathcal{G})$$

$$\mathcal{L}_{denoise} = \|D_{\theta}\left(\left\{x, f_{t}(x)\right\}, t\right) - f_{0}(x)\|_{2}^{2}, \quad x \in \mathcal{P}.$$

These Chamfer Distance-based metrics measure the spatial alignment between generated and ground truth skeletons. Lower is better.

	Dataset	CD-J2J	CD-J2B	CD-B2B
Pinocchio	ModelsRes.	6.852	4.824	4.089
RigNet		4.143	2.961	2.675
Ours-hier		<u>3.654</u>	<u>2.775</u>	<u>2.412</u>
Ours-spatial		3.343	2.455	2.140
Pinocchio	Arti-XL	8.360	6.677	5.689
RigNet		7.478	5.892	4.932
Ours-hier		<u>3.025</u>	<u>2.408</u>	<u>2.083</u>
Ours-spatial		2.586	1.959	1.661

Skinning weight prediction results

Skinning weight prediction results

Skinning weight prediction results

	Dataset	Precision	Recall	avg L1	avg Deformation
GVB		69.3%	79.2%	0.687	0.0067
RigNet	Models Resource	77.1%	83.5%	0.464	0.0054
Ours		82.1%	81.6%	0.398	0.0039
GVB		75.7%	68.3%	0.724	0.0095
RigNet	Articulation-XL	72.4%	71.1%	0.698	0.0091
Ours		80.7%	77.2 %	0.337	0.0050

However, animations still require manual efforts...

Rigging issues in MagicArticulate

- 1. Limited generalization to diverse pose inputs.
- 2. Skeleton sequence modeling can be more efficient.
- 3. Functional diffusion exhibits poor cross-dataset generalization and suffers from slow inference.

Automatic rigging and animation

Puppeteer: Rig and Animate Your 3D Models

arXiv 2025

```
Chaoyue Song<sup>1,2</sup>, Xiu Li<sup>2</sup>, Fan Yang<sup>1</sup>, Zhongcong Xu<sup>2</sup>, Jiacheng Wei<sup>1</sup>, Fayao Liu<sup>3</sup>, Jiashi Feng<sup>2</sup>, Guosheng Lin<sup>1*</sup>, Jianfeng Zhang<sup>2*</sup>

(* Corresponding authors)

<sup>1</sup>Nanyang Technological University, <sup>2</sup>Bytedance Seed, <sup>3</sup>A*STAR
```


Pipeline

Dataset expansion

main set (48K) + diverse-pose subset (11.4K) = 59.4K

Automatic rigging

Automatic rigging: skeleton

Bone-based (6b):

$$[(x_0, y_0, z_0, x_1, y_1, z_1), (x_1, y_1, z_1, x_2, y_2, z_2), ..., (x_{i-2}, y_{i-2}, z_{i-2}, x_{i-1}, y_{i-1}, z_{i-1})]$$

$$\mathbf{T} = [\mathbf{T}_{shape}, \mathbf{T}_{skel}] + \mathbf{P} = [\mathbf{T}_{shape} + \mathbf{p}_0, \mathbf{T}_{skel}^0 + \mathbf{p}_1, ..., \mathbf{T}_{skel}^{j-2} + \mathbf{p}_{j-1}, \mathbf{T}_{skel}^{j-1}]$$

$$[(x_0, y_0, z_0, p_0), (x_1, y_1, z_1, p_1), ..., (x_{j-1}, y_{j-1}, z_{j-1}, p_{j-1})]$$

Automatic rigging: skinning weights

Attention(Q, K, V,
$$\mathbf{E}_{dis}$$
) = softmax $\left(\frac{\mathbf{QK}^{T}}{\sqrt{d_k}} + \lambda \mathbf{E}_{dis}\right) \mathbf{V}$

EOS

Video-guided 3D animation

Input: rigged model, video $V = \{\mathbf{I}_0, \mathbf{I}_1, ..., \mathbf{I}_{n-1}\}$

For each frame $i \in \{1, 2, ..., n-1\}$

we optimize root motion $(\mathbf{Q}_{root}^i, \mathbf{T}_{root}^i)$

joint-specific rotation $Q^i_{joint} = \{\mathbf{Q}^i_0, \mathbf{Q}^i_1, ..., \mathbf{Q}^i_{j-1}\}$

$$\mathcal{L} = \underbrace{\left(\mathcal{L}_{rgb} + \mathcal{L}_{mask} + \mathcal{L}_{flow} + \mathcal{L}_{depth}\right)}_{} + \underbrace{\left(\mathcal{L}_{joint_track} + \mathcal{L}_{vertex_track}\right)}_{} + \mathcal{L}_{reg}.$$

Experiments

- All dataset: main set (48K) + diverse-pose subset (11.4K)
- For training: main set (46K) + diverse-pose subset (10.9K)
- For test:
- 1. 2K from main set
- 2. 500 from the diverse-pose subset (rest pose also unseen)
- 3. 270 from ModelsResource, upright, front-facing, for cross-dataset generalization

Method	Artic	Articulation-XL2.0		ModelsResource			Diverse-pose		
	J2J↓	J2B↓	B2B ↓	J2J↓	J2B↓	B2B ↓	J2J ↓	J2B↓	B2B ↓
Pinocchio	8.324	6.612	5.485	6.852	4.824	4.089	7.967	6.411	5.149
RigNet	7.618	6.076	5.279	7.223	5.987	4.329	7.751	6.392	5.713
MagicArti.	3.264	2.503	2.123	4.114	3.137	2.693	4.376	3.456	2.955
UniRig	3.305	2.611	2.180	3.964	3.021	2.570	3.252	2.569	2.077
Ours	3.033	2.300	1.923	3.841	2.881	2.475	3.212	2.542	2.027
Ours*	3.109	2.370	<u>1.983</u>	3.766	2.804	2.405	2.514	1.986	1.598

Method	Pinocchio	RigNet	UniRig	MagicArticulate	Ours
Inference time	3.9s	4.5s	2.9s	2.4s	1.5s

Skeleton results on AI-generated meshes

Skeleton results on AI-generated meshes

Skinning weight results

Skinning weight results

Method	Articulation-XL2.0		ModelsResource			Diverse-pose			
111001100	Prec. ↑	Rec. ↑	L1↓	Prec. ↑	Rec. ↑	L1↓	Prec. ↑	Rec. ↑	L1↓
GVB	72.9%	65.5%	0.745	69.3%	79.2%	0.687	75.2%	64.9%	0.786
RigNet	73.7%	66.1%	0.729	65.7%	80.2%	0.707	74.7%	65.4%	0.746
MagicArti.	74.6%	71.3%	0.451	68.1%	80.7%	0.642	74.9%	68.4%	0.479
Ours	<u>87.6%</u>	74.0%	0.335	<u>79.7%</u>	81.6%	0.443	83.6%	<u>72.2%</u>	0.405
Ours*	87.9 %	73.8%	0.333	79.8%	<u>81.5%</u>	0.442	86.4%	72.8%	0.353

Method	GVB	RigNet	MagicArticulate	Ours
Inference time	1.895s	0.056s	1.430s	0.032s

Animation results

Video Ours L4GM MotionDreamer

Feed forward 3D animation

- 1. The animation optimization takes more than 20 minutes per object.
- 2. Rendering and tracking losses can cause ambiguity.
- 3. Require multi-view supervision.

Thanks!

